On approximately convex Takagi type functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Hermite––hadamard Type Inequalities for Approximately Convex Functions

In this paper, approximate lower and upper Hermite–Hadamard type inequalities are obtained for functions that are approximately convex with respect to a given Chebyshev system. Mathematics subject classification (2010): Primary 39B22, 39B12.

متن کامل

On Fejér Type Inequalities for (η1,η2)-Convex Functions

In this paper we find a characterization type result for (η1,η2)-convex functions. The Fejér integral inequality related to (η1,η2)-convex functions is obtained as a generalization of Fejér inequality related to the preinvex and η-convex functions. Also some Fejér trapezoid and midpoint type inequalities are given in the case that the absolute value of the derivative of considered function is (...

متن کامل

Notes on Extremal Approximately Convex Functions and Estimating the Size of Convex Hulls

This is a set of notes that is basically and expanded version of the paper Extremal Approximately Convex Functions and Estimating the Size of Convex Hulls. The differences are a few extra pictures, Section 2.7 which is an exposition of results of Ng and Nikodem [5] about measurable approximately convex functions, and an alternate proof of Theorem 2.27 is included. Contents 1. Introduction 2 2. ...

متن کامل

Hermite-Hadamard Type Inequalities for MφA-Convex Functions

This article deals with the different classes of convexity and generalizations. Firstly, we reveal the new generalization of the definition of convexity that can reduce many order of convexity. We have showed features of algebra for this new convex function. Then after we have constituted Hermite-Hadamard type inequalities for this class of functions. Finally the identity has been revealed for ...

متن کامل

Inequalities of Ando's Type for $n$-convex Functions

By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2013

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-2013-11486-3